## Seattle Public Utilities Seismic Study Summary

City of Bellevue
Environmental Services Commission
February 7, 2019



## **Presentation Outline**

- Background
- Seismic Hazards
- Seismic Study Findings
- Seismic Mitigation Recommendations



## Importance of Post-Earthquake Water Supply

- Fire Fighting
- Public Health
- Economic Prosperity

Water is essential





## Seismic Hazards - Recent Earthquakes

|                          | Year | Magnitude | Impacts                                                                                                             |
|--------------------------|------|-----------|---------------------------------------------------------------------------------------------------------------------|
| Loma Prieta, Bay<br>Area | 1989 | 6.9       | Water outages mostly less than a few days; fire suppression water was an issue in the Marina District               |
| Northridge, So. Cal      | 1994 | 6.7       | Over 100 fires; water system damage mostly in areas of poor soils; outage durations 8 to 13+ days                   |
| Kobe, Japan              | 1995 | 6.9       | 109 Kobe fires immediately after earthquake (another 88 in surrounding cities); 60+ days for restoration of service |
| Christchurch, NZ*        | 2011 | 6.2       | 45+ days for restoration of service                                                                                 |
| Tohoku, Japan*           | 2011 | 9.0       | 345 fires; 45+ days for substantial restoration of service                                                          |

<sup>\*15%-20%</sup> chance of a Christchurch-like or Tohoku-like type event in Seattle in next 50 years



## **SPU Seismic Mitigation Program History**

- Seismic Reliability Study of the Seattle Water
   Departments Water Supply System (Cygna Energy Services, 1990)
- Earthquake Loss Modeling of the Seattle Water System (Kennedy Jenks Chilton/USGS, 1990)

Job No. 88175 Report No.: 1 Revision: 0

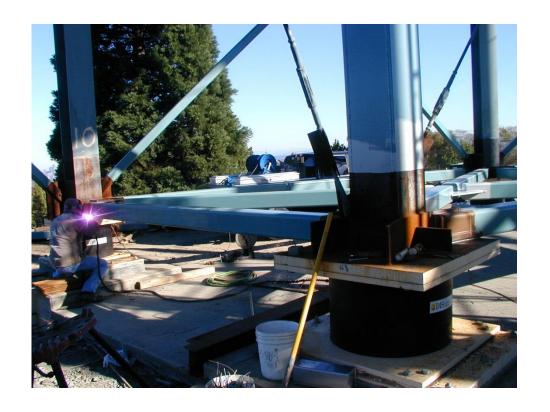
SEISMIC RELIABILITY STUDY OF THE SEATTLE WATER DEPARTMENT'S

WATER SUPPLY SYSTEM

Prepared for:

Seattle Water Department Dexter Horton Building 710-2nd Avenue Seattle, Washington 98104

Prepared by: Ronald M. Poliska 2/6/90
Ronald M. Poliska Date

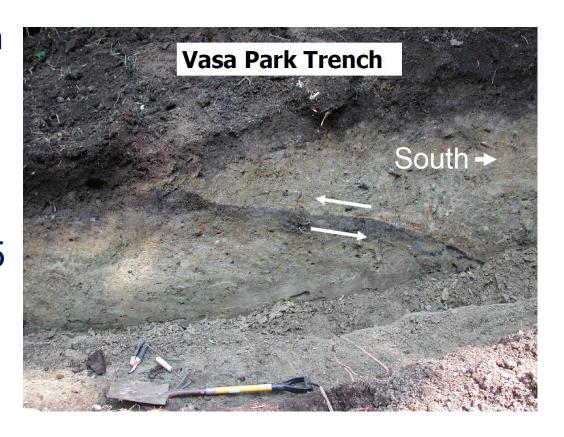

Cygna Energy Services 2121 N. California Blvd. Walnut Creek, California 94596



February 6, 1990

## **SPU Seismic Mitigation Program History (continued)**

- SPU Seismic Upgrade Program (e.g., OCC, Myrtle Elevated Tanks, Barton Standpipe, etc.)
- Performance of Water Supply Systems in the February 28, 2001 Nisqually Earthquake (system post-earthquake hydraulic modeling, Water Research Foundation, 2008)




## Water Supply Forum – Resilience Study

- Regional analysis of vulnerabilities (Everett, Seattle, Tacoma areas)
- Focus areas: Water quality, drought, climate change, seismic
- Future briefing topic for Operating Board

## **New Developments (since 1990)**

- Active surface faults identified throughout Puget Sound region (e.g., Seattle Fault, South Whidbey Island Fault, Tacoma Fault, etc.)
- Migration from 10% probability of exceedance in 50 years (475 year return interval) design earthquake to 2% probability of exceedance in 50 years (2475 year return interval) design earthquake



## **New Developments (since 1990 - cont)**

 Earthquake Experience (e.g., Northridge, Japanese, Chilean and New Zealand events)

 Potential for mass availability of earthquake-resistant pipe in U.S.



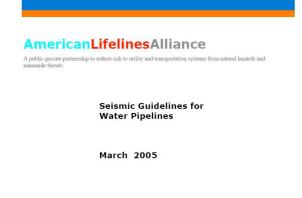
#### Los Angeles Tests Water Pipes That Stand Up to Quakes



## Seismic Vulnerability Assessment

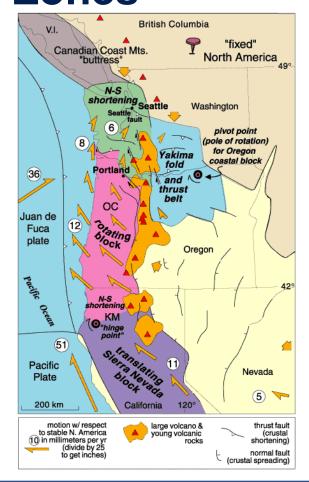
#### - Project Goals

- Preliminary seismic vulnerability assessments for all critical water transmission and distribution system facilities.
  - Defined earthquake scenarios
  - ASCE/SEI 7-10 (Building Code)
- Hydraulic modeling of post-earthquake water system performance
- Establish post-earthquake water transmission and distribution system performance goals

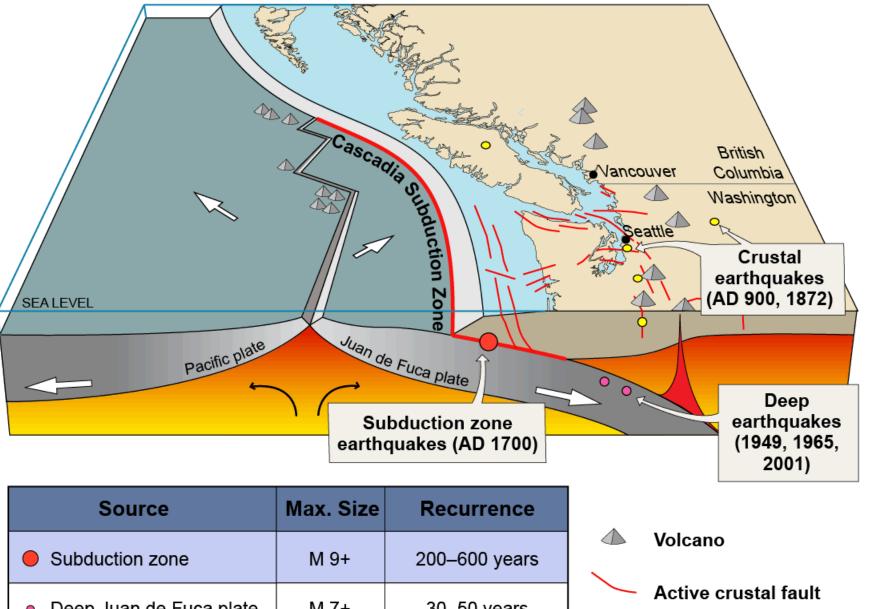

## **Seismic Vulnerability Assessment**

- Project Goals (continued)

• Develop planning level mitigation measures, cost estimates and timeframe to meet service level goals.


Define seismic design standards for water transmission and








## **Earthquake** Source Zones



**Seattle Public Utilities** 



| Source                            | Max. Size | Recurrence         |                             |
|-----------------------------------|-----------|--------------------|-----------------------------|
| <ul><li>Subduction zone</li></ul> | M 9+      | 200–600 years      |                             |
| Deep Juan de Fuca plate           | M 7+      | 30–50 years        | Active crustal fault        |
| Crustal faults                    | M 7+      | Hundreds of years? | Active plate boundary fault |

<sup>\*</sup>figure modified from USGS Cascadia earthquake graphics at http://geomaps.wr.usgs.gov/pacnw/pacnweq/index.html

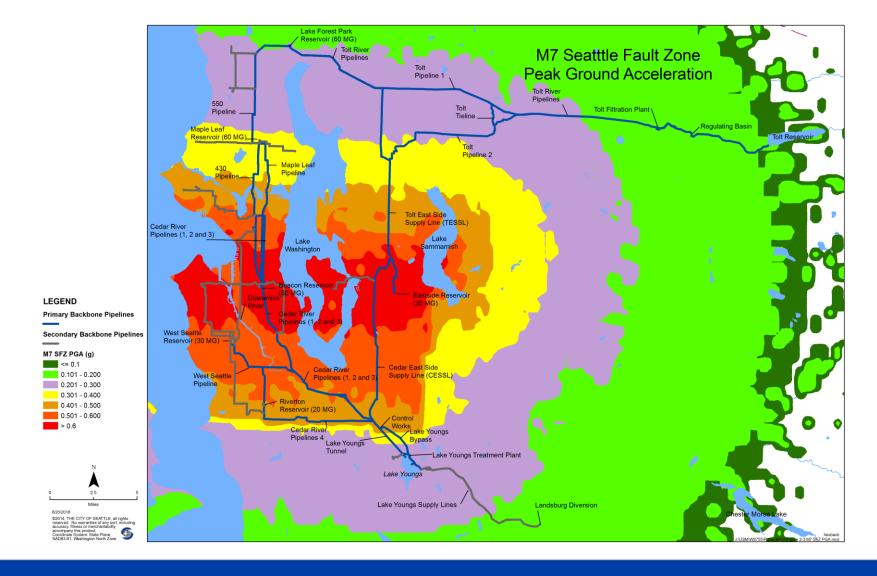
## Seattle Earthquake Likelihood in the Next 50 Years

- 15% to 20% chance of catastrophic earthquake, similar to 2011 Christchurch or Tohoku earthquakes
  - 14% chance of M9 (plus or minus) Cascadia subduction earthquake
  - 5% chance of M6.5 or larger Seattle Fault earthquake
- 85% chance of at least one intraplate earthquake "similar" to the 2001 Nisqually earthquake

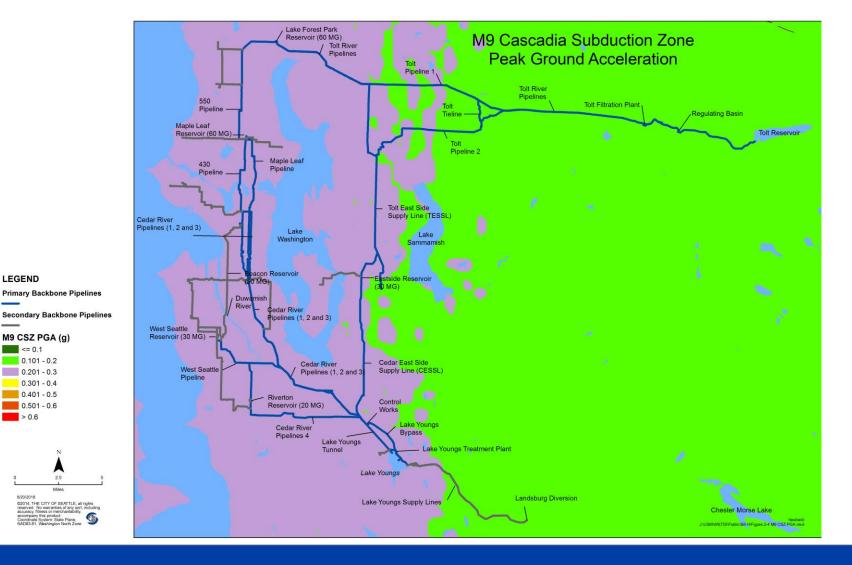






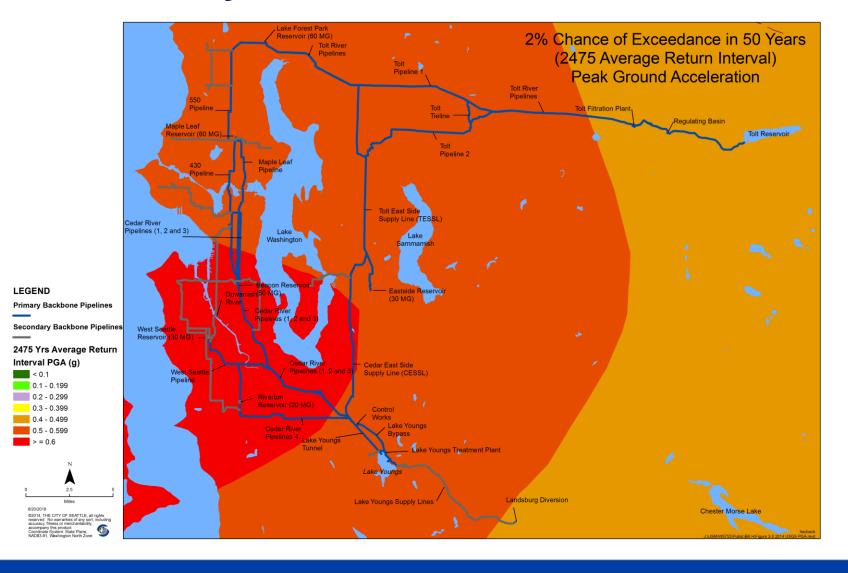

## **Seismic Hazard Analysis - Scenarios**

- Three Scenarios
  - M7.0 Seattle Fault
  - M9.0 Cascadia Subduction Zone
  - 0.02 Probability of Exceedance in 50 Years Ground Motions
- Hazards Evaluated
  - Ground Shaking Intensity (PGA)
  - Permanent Ground Displacements


## **SPU Water System Seismic Hazard Map**



#### M7 Seattle Fault Zone Peak Ground Acceleration

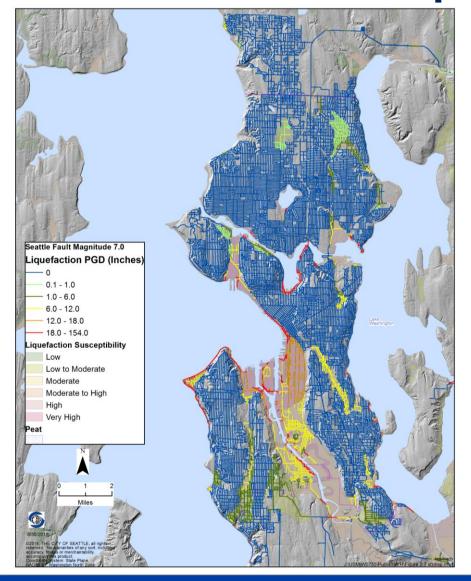


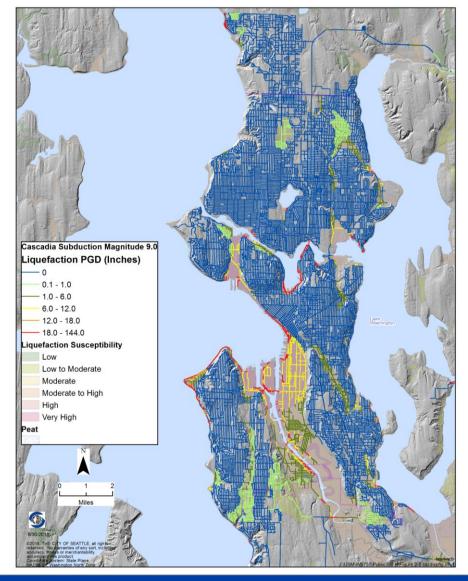

#### M9.0 Cascadia Subduction Zone Peak Ground Acceleration



**USGS 0.02 Probability of Exceedance in 50 Years Ground** 

**Motions** 




## **Earthquake Hazards - Liquefaction**



## **Permanent Ground Displacement**





### **Seismic Vulnerability Assessments**

- "Vertical" Facilities
  - Watersheds
  - Treatment Plants
  - Reservoirs/Tanks
  - Pump Stations and Gatehouses
  - Support Facilities
- Pipelines
  - Transmission
  - Distribution

#### **Watersheds**

- Dams Meet FERC requirements
- Landslides
  - Minor impacts in M7.0 SFZ and M9.0 CSZ events
  - Moderate or more severe impacts possible for building code ground motions
- Other Facilities
  - Tolt intake bridge connections
  - Tolt screenhouse
  - Landsburg Tunnel Gatehouse



#### **Treatment Plants**

- Structural Performance generally good
- Some Nonstructural Concerns
- Sloshing in Basins
- Emergency Power
- Clearwells some damage (particularly for building code ground motions) but expected to remain functional



## Regional Reservoirs and Tanks

- Reservoirs
  - Riverton Reservoirs Is Most Vulnerable
  - Eastside Reservoir Also A Concern
  - Damage Possible to Other Reservoirs But Most or All Others Are Expected to Remain Functional

 Elevated Tanks and Standpipes: All Are Vulnerable to Code Level

**Ground Motions** 

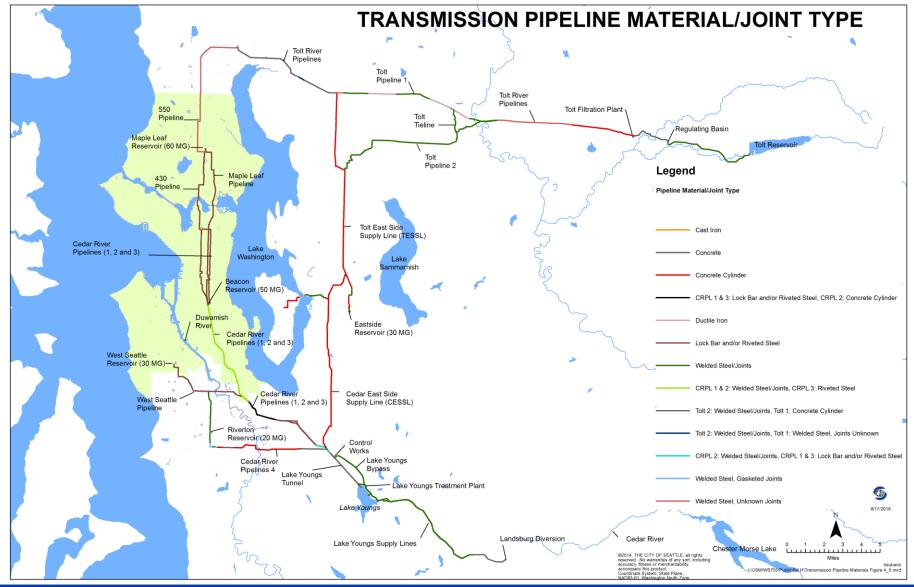
Eastside Reservoir After Nisqually Earthquake:

Up-close inspection shows a gapped area of about ¼ in and discoloration below

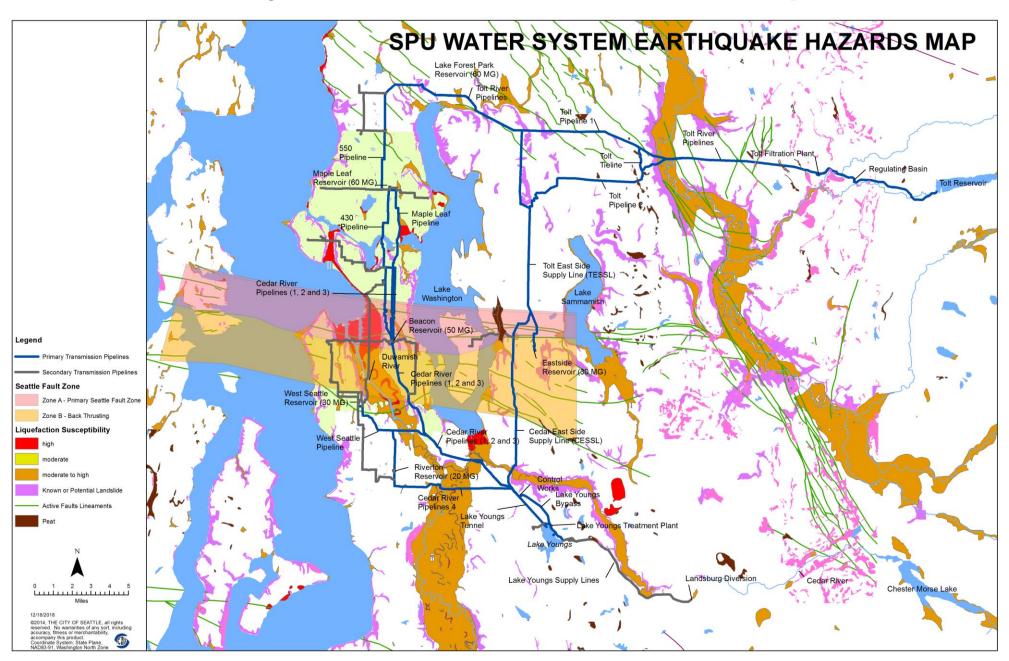
Potential direction of lateral seismic force Myrtle #2

Up-close inspection shows vertical surfaces compressed together




## **Regional Pump Stations**

Several Pump Stations Are Vulnerable But Most of Vulnerable Pump Stations Are Not Critical






### **Transmission Pipelines**



## **SPU Water System Seismic Hazard Map**



## **Transmission Pipelines – Steep Slopes**







## **Transmission Pipelines – River Crossings**



## **Transmission Pipelines – Swamps and Piles**



## **Vulnerability Assessment Findings Summary**

- For a catastrophic earthquake (15% to 20% chance in next 50 years)
  - Loss of Cedar and Tolt Transmission Systems Likely
  - Loss of Eastside Supply Line Likely
  - Distribution Pipeline Failures
    - M7 SFZ Scenario: ± 2000 failures
    - M9 CSZ Scenario: ± 1400 failures
  - Most Terminal Reservoirs Remain Functional
  - Loss of Over One Dozen Critical Facilities
  - Loss of Water Pressure Throughout Direct Service Area Within ± 24 Hours
- Mitigation plans balancing risk vs cost



## Mitigation Approach – Short Term Measures (Next 15 to 20 Years)

- Enhance emergency preparedness and response planning
  - Earthquake-specific response plan
  - Significantly augment pipeline repair material stocks
  - Assess adequacy/improve emergency drinking water
- Develop/implement isolation and control strategies
  - Reservoir isolation valves
  - Explore isolating areas of large amounts of pipe damage
  - Add valves to make isolation easier

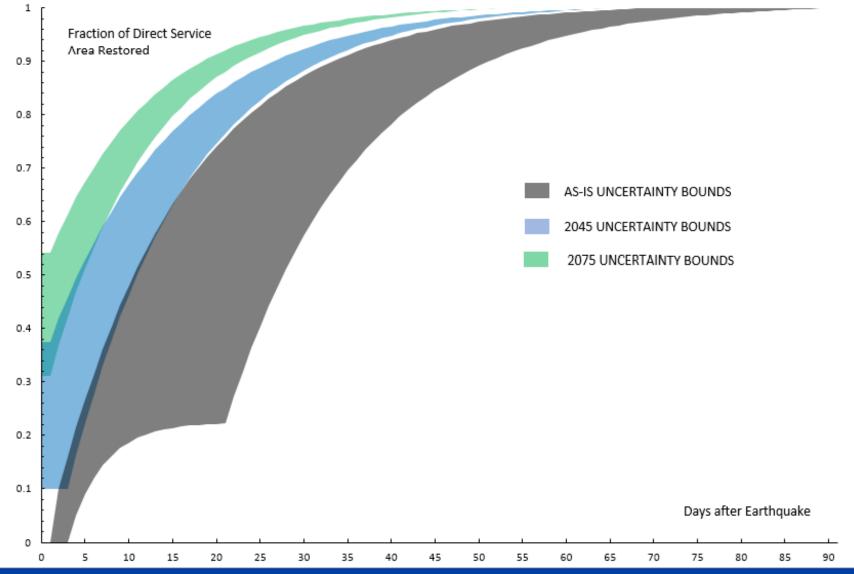


## Mitigation Approach – Long Term Measures (Next 50 Plus Years)

- Build It Right (Now Until Forever)
  - Use earthquake-resistant pipe when pipe is replaced
  - Design new facilities to remain functional
- Upgrade Vulnerable Critical Facilities (Next 50 Plus Years)
  - Most vulnerable transmission pipelines locations (Cedar system has top priority)
  - Critical facilities
    - Large volume reservoirs
    - Key pump stations and support facilities
    - Life-safety



#### Seismic Resilience Recommendations


- \$15 to \$20 million per year 50+ years
- Options analysis for all projects
  - Cost and functional tradeoff between:
    - Full upgrades functional after design EQ
    - Upgrades non-functional but repairable
    - Operational/response: expect significant damage, but able to repair quickly
  - Example: a vulnerable pipe crossing
    - Full replacement/seismic upgrade of pipe
    - Slip-line pipe
    - Install emergency connections
    - Place spare pipe immediately adjacent



### **Transmission System Mitigation Recommendation Summary**

|                                    | Order of             |        |        |        |        |        |        |        |        |        |        |        |
|------------------------------------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                    | Magnitude            | 2018 - | 2023 - | 2028 - | 2033 - | 2038 - | 2043 - | 2048 - | 2053 - | 2058 - | 2063 - | 2068 - |
| Mitigation Element                 | <b>Cost Estimate</b> | 2022   | 2027   | 2032   | 2037   | 2042   | 2047   | 2052   | 2057   | 2062   | 2067   | 2072   |
| Transmission Pipelines             |                      |        |        |        |        |        |        |        |        |        |        |        |
| Emergency Repair Materials         | \$6,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| Transmission Pipe Analysis/Pre Eng | \$500,000            |        |        |        |        |        |        |        |        |        |        |        |
| Transmission Line Valves/Manifolds | \$10,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| CRPLs in Renton                    | \$75,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| CESSL Cedar River Crossing         | \$20,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| TPLS at Norway Hill                | \$30,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Seismic Resistant CRPL             | \$120,000,000        |        |        |        |        |        |        |        |        |        |        |        |
| Seismic Resistant TPL              | \$72,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Seimic Resistant CESSL/TESSL       | \$90,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Misc Transmission Pipe Upgrades    | \$19,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Other Facilities                   |                      |        |        |        |        |        |        |        |        |        |        |        |
| Eastside Reservoir                 | \$12,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Riverton Heights                   | \$10,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Maple Leaf PS/Gatehouse            | \$2,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| Beverly Park Elevated Tank         | \$12,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Control Works Surge Tanks          | \$5,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| Cascades Dam                       | \$10,000,000         |        |        |        |        |        |        |        |        |        |        |        |
| Richmond Highlands #2              | \$5,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| Foy Standpipe                      | \$4,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| Landsburg Tunnel Gatehouse         | \$1,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| West Seattle Pump Station          | \$1,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| Trenton Pump Station               | \$2,000,000          |        |        |        |        |        |        |        |        |        |        |        |
| Fairwood Pump Station              | \$1,000,000          |        |        |        |        |        |        |        |        |        |        |        |

## **Direct Service Area Restoration Projected Improvement**





# Questions?