Advanced Metering Infrastructure (AMI) 2016 Feasibility Study

NAV OTAL – UTILITIES DIRECTOR

COUNCIL PRESENTATION

APRIL 4, 2016

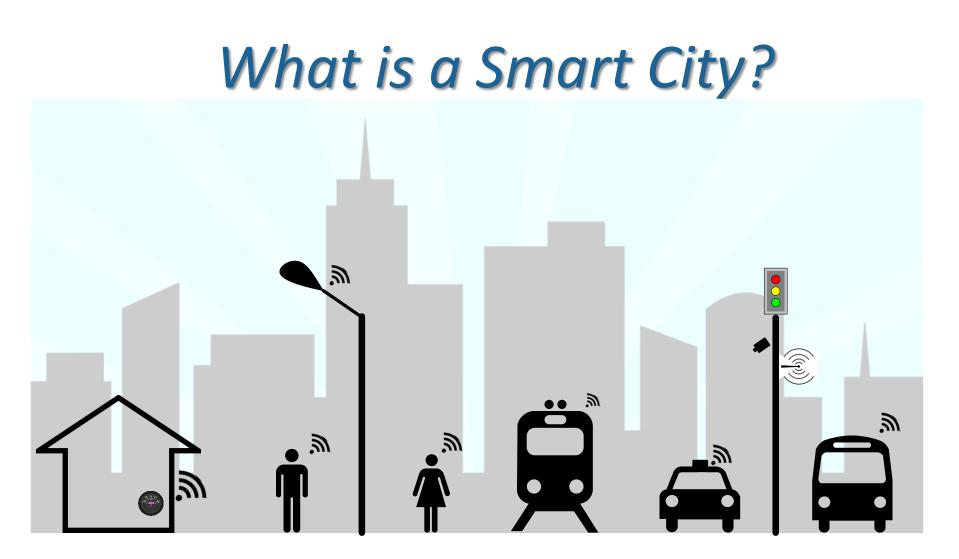
Goals and Agenda

Goals:

- 1. Update on Advanced Metering Infrastructure (AMI)
- 2. Direction for 2017-2018 proposed budget

Agenda:

- 1. Smart Cities' initiative water
- 2. Challenges of the current meter reading program
- 3. AMI feasibility study findings
- 4. Proposed next steps


Bellevue City Council Vision Embraces Smart City

Vision Statements:

- Infrastructure is ample and in excellent condition, including roads, rails, high-speed ٠ data, reliable electricity, and clean water
- A state-of-the-art, intelligent transportation system moves people through the city • with a minimum of wait times and frustration
- Bellevue is a "Smart City" with a clean, high-quality environment and excellent and • reliable infrastructure that supports our vibrant and growing city, including high-tech connectivity
- Our institutes of higher learning are connected physically and digitally ٠
- Our residents live in a safe, clean city that promotes healthy living •
- We have superb infrastructure to support growing businesses and desirable • residential opportunities

Two Year Priorities:

- Integrate our infrastructure planning with an economic development focus • departments should work collaboratively
- Develop the Smart City strategy to include high-speed data options to support ٠ business and residents and determine implementation steps
- Identify and implement technologies that improve customer service •

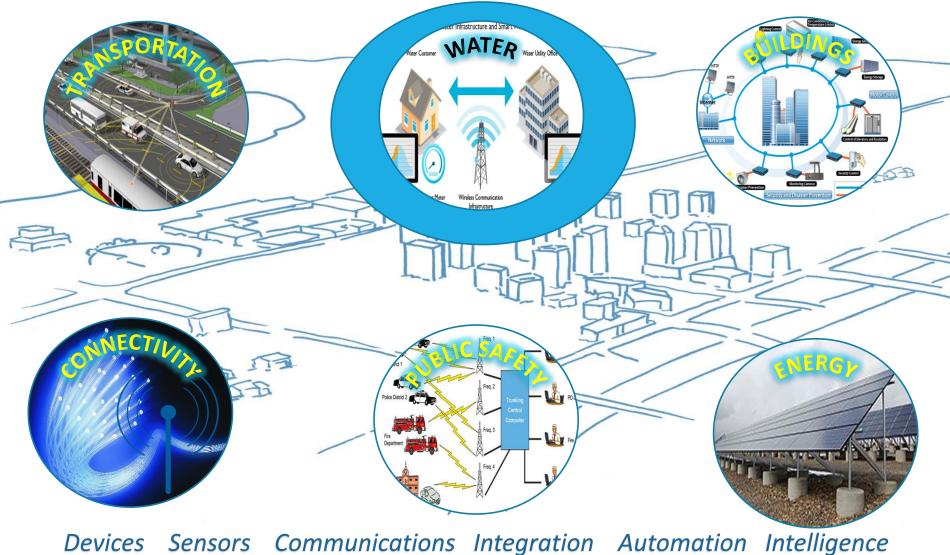
Collect + Communicate + Crunch I Smart City

What are Bellevue's drivers for becoming a Smart City?

Livability

- Improve health and safety?
- Save time?
- Improve economic competitiveness?
- Provide better information?

Sustainability


- Save resources?
- Save money?
- Reduce waste?
- Protect the environment?

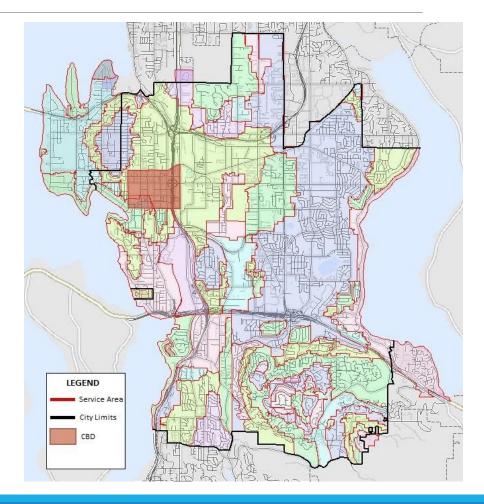
Resiliency

- Better prepared for emergencies?
- Improve recovery from disruptions?
- Increase reliability?

SMART BELLEVUE

Bellevue's Water Metering Infrastructure

Population served – 146,000

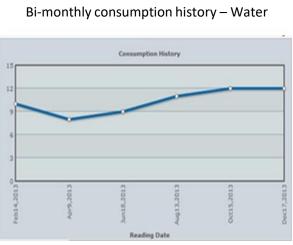

• Day time population – 235,000

Service area - 37 square miles

- City of Bellevue
- Clyde Hill
- Hunts Point
- Medina
- Yarrow Point
- Sections of Kirkland and Issaquah
- 37,300 Customer accounts

Utilities Meter Inventory by Size 2014 data

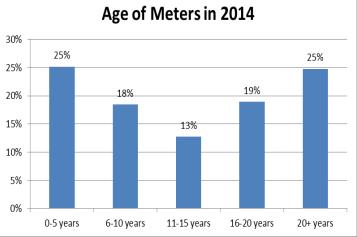
SIZE	0.62"-0.75"	1"-2"	>2"	TOTAL
TOTAL	32,945	7,575	284	40,804


Existing Meter Reading Program

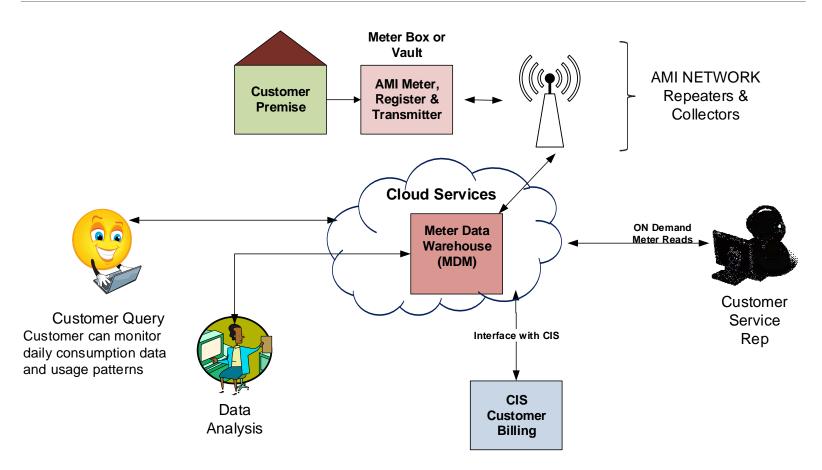
- **Bi-monthly** reading frequency
- Manual reading
- **Meter readers** allocate approximately 55% of their time to meter reading

- Meter reads entered in handheld data loggers, and downloaded into billing system for customer bills
- •**Customers can use MyUtilityBill** to manage their account online and get bi-monthly consumption data

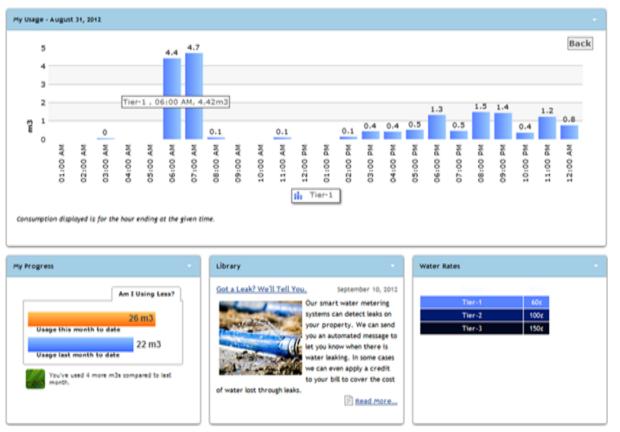
Challenges with Current Meter Reading Program


Significant water loss due to undetected leaks

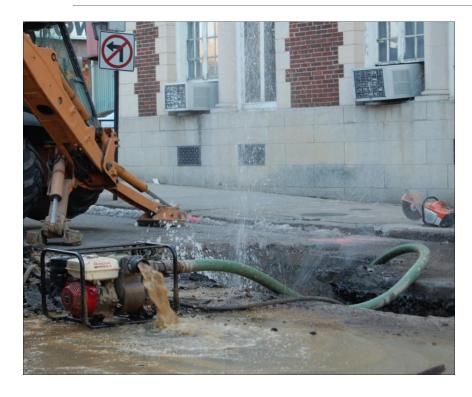
- High customer bills
- Waste of precious resource
- Lack of real time data
 - Customers can't self-monitor and manage consumption
 - Water conservation


Inequitable water charges

- Aging meters under-register
- Current meters do not capture low flow



AMI Technology


Benefits to the Customer – Access to real time data

Hourly consumption - Water

- Earlier detection of leaks can enable customers to avoid high bills
- Ability to proactively manage higher bills
- Quick response to issues and inquiries

Stewardship of Scarce Resource -System-Wide Leak Detection Benefits

Sometimes it is obvious where water loss is occurring. However, a large percentage of water loss can go undetected for weeks or months. AMI interval data and fixed network acoustic sensors can provide critical information in support of an effective leak detection and avoidance program.

Activities include:

- Leak detection
- o Pressure management
- Faster break repair times
- Line replacement projects
- Condition assessment
- Operational modifications

Leak Detection Techniques

- \circ System-wide surveys
- o Permanent and semi-permanent monitors
- o Hydraulic modeling
- o Zone metering

AMI - Economic Benefits

Reduced meter reading labor-from 6 to 2
Reduced meter reading vehicles-from 6 to 2
Reduced cost from gasket repairs
New meters – higher accuracy
Salvage value from old meters

Environmental Benefits

Water conservation

OPrevent water contamination

Improved system planning

•Reduced Greenhouse Gases

AMI Feasibility Study Scope

CH2M HILL retained to perform a comprehensive Feasibility Study and economic evaluation on current AMI technologies.

- Business processes
- Customer Benefits
- Operational Benefits

- Fixed based AMI
- Cellular
- Smart Cities
- Interoperability
- Internet of Things

- Meter reading
- Customer Service
- Capital Planning
- Improve registration
- Leak detection

- Conclusions
- Recommendations

Final

Report

- Technology
- Risk Factors
- Procurement

Options Considered

•Base Case – Manual read

OStandard AMI Solution

•High Power AMI Solution

•Cellular AMI Solution

Standard AMI Solution

- Meters are connected to a communication device
- Hourly reads transmitted once a day
- Data is transmitted through collectors and repeaters
- Data can be read through a customer portal

High-Powered AMI Solution

- Communications occurs through fewer devices because of higher power
- Higher initial cost compared to
 Standard AMI solution
- Lower battery life require more frequent battery replacement

(e.g., Sensus)

Cellular AMI Solution

 Communications occurs through an existing Cellular network (e.g., AT&T, Sprint, Verizon, etc.)

 Lowest initial capital cost, but higher on-going cost because of cellular network costs

(e.g., Badger)

Summary of Business Case Results

Business Case Outputs:	Manual Read (No AMI)	Standard AMI Solution	High Power AMI Solution	Cellular AMI Solution
Capital Costs	\$9.2M	\$23.1M	\$24.1M	\$22.9M
Life Cycle Cost (Net Present Value (NPV))	-\$11.4M	-\$9.8M	-\$11.4M	-\$17M
NPV Compared to Manual Reads		\$1.6M	-\$27,000	-\$5.7M

Standard AMI - Costs

Capital Costs

	Cost Component	Total	
1	Meters – Solid State	\$10,280,000	
2	Meter Boxes	\$5,256,000	
3	Lids	\$608,000	
4	Transmitters (MIUs)	\$4,008,000	
5	Communication and Other Installation	\$445,000	
6	Integration	\$1,068,000	
7	Bellevue Implementation Cost	\$1,425,000	
	Total	\$23,089,000	

Standard AMI - Costs cont.

New Operating Costs

Software licenses and backhaul fees

o1 FTE - Data analyst / business intelligence

Revenue Impact

•Fewer leaks

•Water conservation

Cost to the Customer

= \$1.80 a Month

Pays for installation and 20-year operations of the Full AMI System

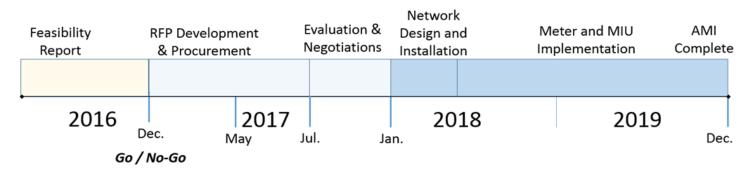
Options Question is not <u>if</u>, but <u>when</u> to implement AMI

OPTION 1 - RECOMMENDED

IMPLEMENT AMI IN 2018-2019

• Realize benefits immediately

- Potential catalyst for other Smart
 City initiatives
- Potential for better pricing from vendor


Option 2 - DELAY AMI IMPLEMENTATION

Allow more time to AMI technology to mature

Potential for more favorable pricing, particularly for cellular communications technologies

Proposed Next Steps -AMI Implementation Schedule

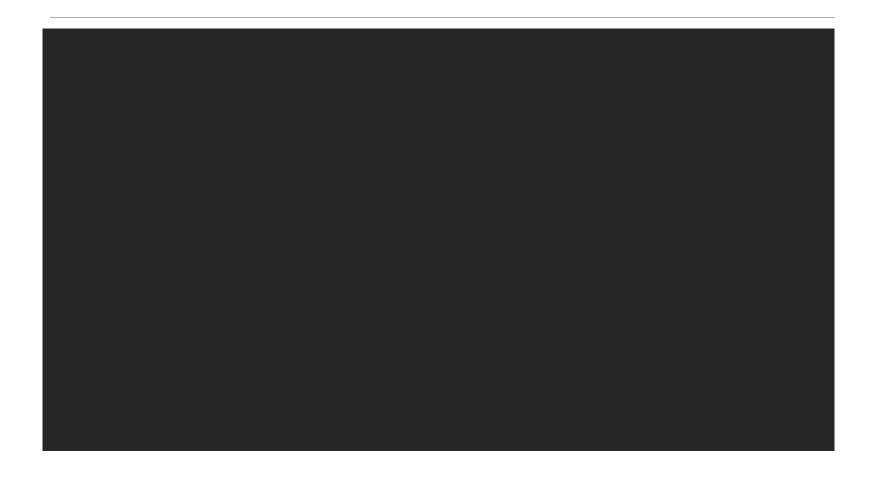
- Go/No-Go Decision December 2016
- RFP Release Date May 2017
- Proposals Due July 2017
- Notice to Proceed December 2017
- Implementation Begins January 2018
- Implementation Complete December 2019

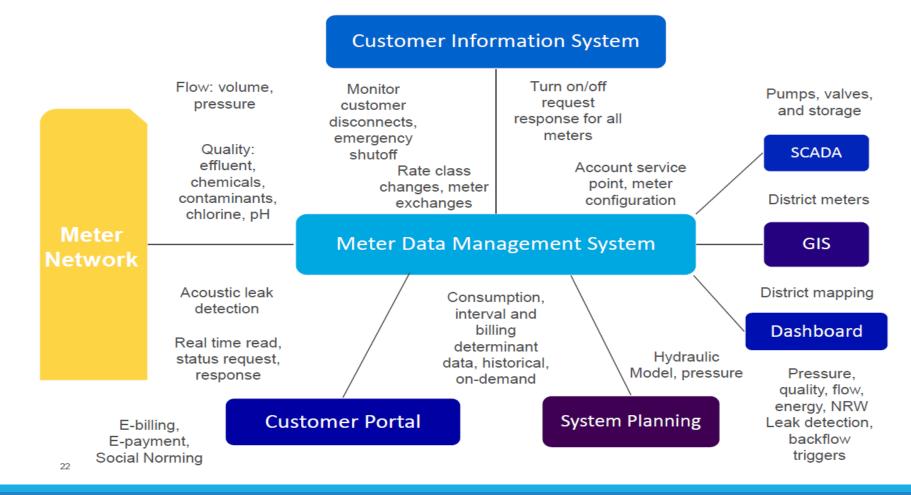
Next Steps

Direction needed from Council

Include AMI in Utilities proposed CIP budget and rates

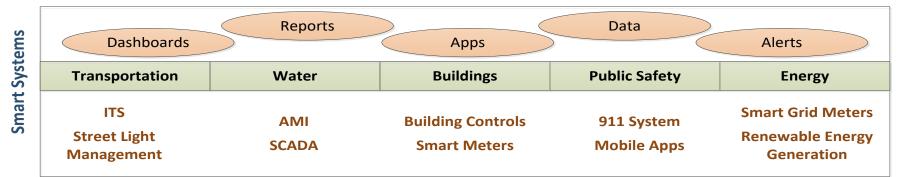
Customer Outreach


Advanced Metering Infrastructure (AMI) 2016 Feasibility Study


NAV OTAL – UTILITIES DIRECTOR

COUNCIL PRESENTATION

APRIL 4, 2016



AMI Data Can Be Integrated with Other Data to Deliver Additional Improvements

AMI Can Provide Other Smart City Benefits

			-2	
Benefits	For People	For Syste	ms	For Resources
	Greater safety and resilience	Efficiency	Safety	Less waste
	Transparency and choice	Resiliency	Predictive	Lower costs
	Convenience and better service	Automation	Adaptive	Sustainable operations

Analytics

Security and Privacy

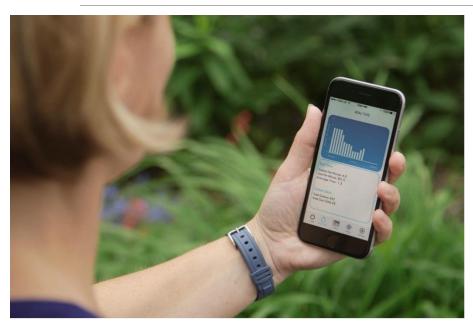
Sensors and Devices

System Integration

Computing Resources

Costs

Capital Costs


Cost Component		2018	2019	Total
1	Meters – Solid State	\$6,799,000	\$3,481,000	\$10,280,000
2	Meter Boxes	\$3,476,000	\$1,780,000	\$5,256,000
3	Lids	\$402,000	\$206,000	\$608,000
4	MIUs	\$2,651,000	\$1,357,000	\$4,008,000
5	Communication and Other Installation	\$445,000	\$0	\$445,000
6	Integration	\$1,068,000	\$0	\$1,068,000
7	Bellevue Implementation Cost	\$794,000	\$630,000	\$1,425,000
	Total	\$15,635,000	\$7,454,000	\$23,089,000

Solid State vs Positive Displacement Meters

Mechanical Positive Displacement or Velocity meters	Solid State meters - Fluidic Oscillator, Ultrasonic or Magnetic
 Proven technology Inherent Low Flow Performance Limitations Measure Only A Small Percentage of Flow	 Newer technology No Moving Parts to Wear
Below 1/4 GPM –Even When New Calcium and partials in the water can cause	Out Particles Do Not Cause
problems Source of non-revenue water Significant Pressure loss Requires maintenance	Meters to Stick or Stop Reduced Pressure Loss No Maintenance Better Low Flow Accuracy Better High Flow Durability

AMI Could Enable New Rate Structures

Interval data would allow for:

Seasonal rates

Time of Use rates

Budget based (tiered) rates

 Alarms notifying customers when entering higher tiers.

Pre-pay accounts

"Cell phone" plans (i.e. allocated minutes)

AMI Vendor Comparison (Meters)

	Neptune	Sensus	Mueller	Badger
AMI System	R450	FlexNet	Mi.Net	Orion
Meter Model	T-10	iPerl	420 Series	E-Series
Material & Type	Bronze, PD	Composite, electro-magnetic	Composite or bronze, PD	Composite, ultrasonic
Low flow accuracy	0.25 gpm	0.03 gpm	0.125 gpm	0.05 gpm
Licensed / Unlicensed RF	450 MHz Licensed	900 MHz Licensed	900 MHz Unlicensed	CDMA Cellular
Transmission Frequency	1x per day	6x per day	1x per day	1x per day
Priority Alerts	Immediate	< 4 hours	Immediate	< 24 hours
Remote Shutoff / On Demand Reads	No	Yes	Yes	No
MIU storage	1 day	35 days	120 days	120 days