

Multimodal Concurrency

Transportation Commission February 11, 2021

Multimodal Concurrency and Mobility Implementation Plan

Bellevue Staff

Kevin McDonald

FEHR PEERS

Chris Breiland

Don Samdahl

Study Session Topic Overview

- Address some of the questions about concurrency raised by Commissioners in and following the January meeting
- Outline in more detail the steps for calculating Mobility Units of supply and demand for multimodal concurrency
- Further discussions about the staff recommendation related to transportation concurrency
- Seeking Commission concurrence on refinements to multimodal concurrency framework – help advance toward implementation

Key Questions Raised by Commissioners in January

- How do we know the "right network" of supply is being built? What outcomes can be expected?
- How do we ensure that what is built is related to growth and will be utilized over time?
- How do we measure progress?

On the following slides, we will go through a step-by-step process to help answer these questions and consider the greater transportation and land use planning context in Bellevue

A Step-by-Step Sequence Toward Multimodal Concurrency

 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightleftarrows 6 \rightarrow

Available

funding for

12-year TFP

Forecast Demand

12-Year Growth Forecast from PSRC

BKR Model TFP Baseline Network

- Vehicles

- Intersection V/C
- Corridor Speed
- Bus Speed

Trips:

Vehicle

Transit

Walk

• Bike

- Transit Access
- Capacity by others
- Exceptional TDM

Apply Performance **Metrics to TFP** "Baseline"

- Transit
- Walk
- Bike

Test Performance of Candidate **Projects**

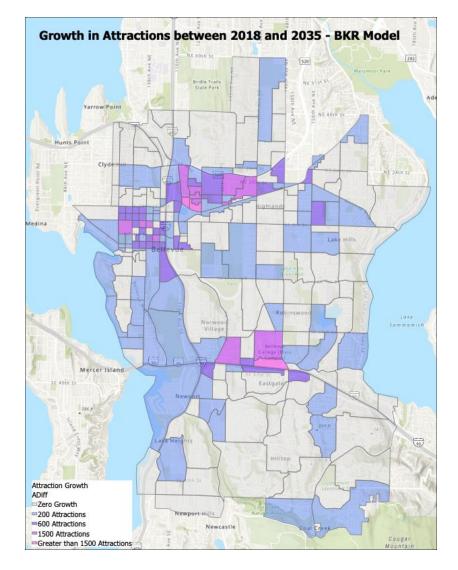
- Vehicles
- Transit
- Walk
- Bike

BKR Model TFP Updated Network

Create Supply

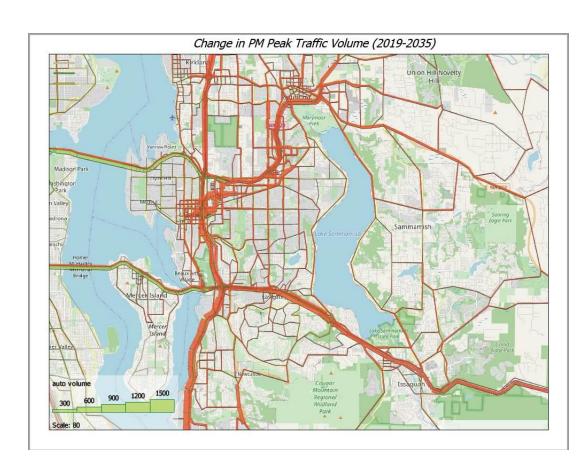
Implement Projects in CIP

- Intersection V/C
- Corridor Speed
- Bus Speed
- Transit Access
- Ped Network Completeness
- Bike Network Completeness

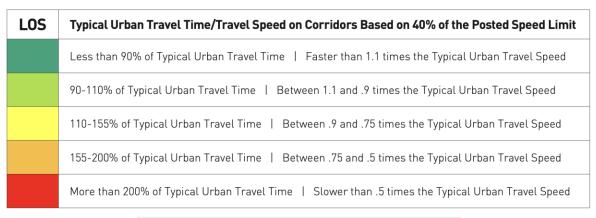

Step 1 – Forecast Demand

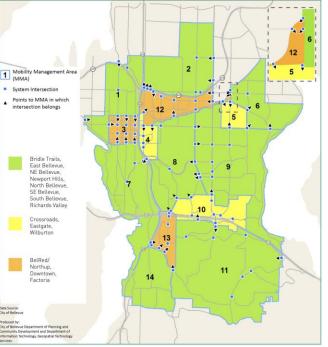
- Bellevue staff forecasts the increase in trips by all modes using growth forecasts from the PSRC
- 12-year growth forecast aligns with the TFP analysis horizon
- Specific increase in person trips (mobility units of demand) calculated by the BKR Cast model

Step 2 – Use BKR Cast Model To Understand Growth Impacts

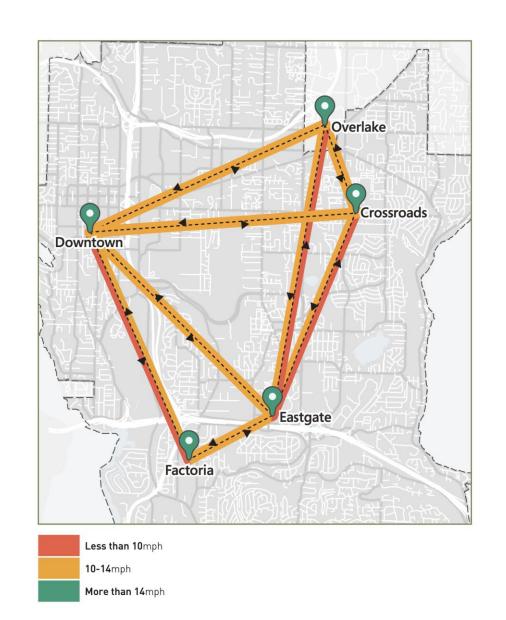

- How many more person trips (mobility units of demand) are generated?
- Where is the growth occurring?
- What is the mode share of trips and how did that change?
- Understand the impacts of other agency investments in Bellevue's transportation network (WSDOT, Sound Transit, Metro, etc.)
- Considers latest updates in TDM program

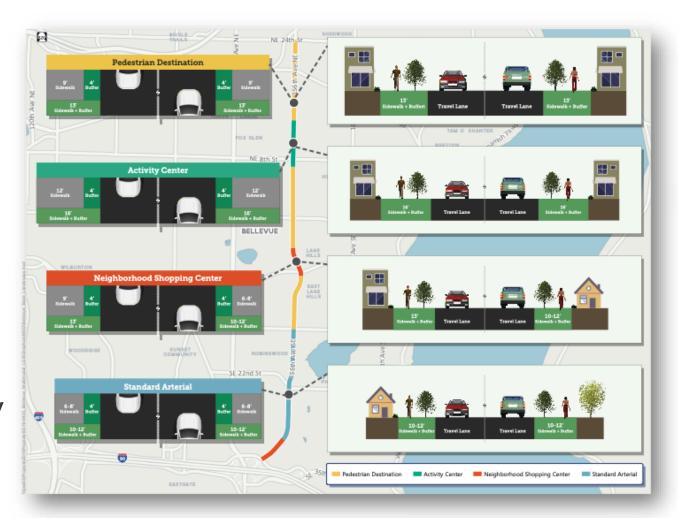
Step 3 – Evaluate "Baseline" Performance


- Includes existing TFP without any additional projects
 - All the projects in the existing TFP


 known as baseline projects
- Performance metrics based on MMLOS
- Other performance metrics could also be considered to identify gaps in performance and areas of emphasis

Step 3 – Vehicle Performance


- Vehicle performance options from MMLOS
 - Corridor travel speed
 - v/c ratio
- Focused on vehicle volume/capacity and congestion measures


Step 3 – Transit Performance

- Transit performance options from MMLOS
 - Frequent transit network speed
 - Bus stop amenities
- Focused on facilities for passenger comfort, access, and information
- Also considers the transit travel time to destinations
- Those elements within Bellevue's control

Step 3 – Pedestrian Facility Performance

- Pedestrian LOS from MMLOS
 - Sidewalk and landscape buffer
 - Intersection treatments
 - Mid-block crossing frequency
- Focus is on arterial streets in growing areas of the city
- Focused on pedestrian access, comfort, and safety

Step 3 – Bicycle Facility Performance

- Bicycle LTS from MMLOS
 - Considers adjacent speed and traffic volumes
 - Different bicycle facilities for different types of bicyclists (commuters to casual cyclists)
 - Along arterials and crossings at intersections
- Focused on Bicycle Priority Network
- Access within and between major growth areas

Roadway Characteristics		Bicycle Facility Components: Guideline to Achieve Intended Level of Service/Level of Traffic Stress						
Speed Limit (MPH)	Arterial Traffic Volume	No Marking	Sharrow Lane Marking	Striped Bike Lane	Buffered Bike Lane (Horizontal)	Protected Bike Lane (Vertical)	Physically Separated Bikeway	
= 25</th <th><3k</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th>	<3k	1	1	1	1	1	1	
	3-7k	3	2	2	2	1	1	
	>/=7k	3	3	2	2	1	1	
30	<15k	3	3	2	2	1	1	
	15-25k	4	4	3	3	3	1	
	>/=25k	4	4	3	3	3	1	
35	<25k	4	4	3	3	3	1	
	>/=25k	4	4	4	3	3	1	
>35	Any	4	4	4	4	3	1	

Step 3 – Summary of MMLOS Performance Measures

Mode	Level of Service Metric	Details and Notes	
	Volume/Capacity Ratio at System Intersections	LOS varies by neighborhood context	
Vehicle	Typical Urban Travel Speed on Arterials	Percent of posted speed limit. LOS varies by neighborhood context	
Dodostvico	Sidewalk Width plus Landscape Width	12-feet to 20-feet for sidewalk + landscape. Varies by land use context	
Pedestrian	Pedestrian Comfort, Access and Safety at Intersections	Crosswalk spacing and back of curb design varies by land use context	
Bicycle	Level of Traffic Stress, or Level of Bicyclist Comfort on Arterials	Bicycle facilities achieve intended Level of Traffic Stress. Design varies by traffic speed and traffic volume, and other factors	
Dieyeic	Level of Traffic Stress, or Level of Bicyclist Comfort at Intersections	Maintain corridor Level of Traffic Stress at intersections. Design components vary by context.	
Turneit	Passenger Comfort, Access and Safety	Components vary by transit stop/transit station typology, and land use context	
Transit	Transit Travel Speed on Corridors between Activity Centers	14 mph on Frequent Transit Network corridors between Activity Centers	

Step 4 – Identify Available Funding to Improve the Transportation System

- Bellevue Department of Finance and Asset Management provides TFP revenue forecasts
- Accounts for continuation of ongoing TFP projects
- Only a portion is available to fund new projects

Total Projected Revenue	(Millions) \$628.8
Less Committed Revenue -Allocations to Non-TFP CIP Projects and Ongoing Programs	\$143.9
Less Constrained Revenue -Continuation of Ongoing CIP Programs (2026-2030)	\$96.8

Table 2: Summary of 2019–2030 Transportation Funding Allocations

Includes:Committed to CIP TFP projects - \$279.4M

Balance: Allocation to 2019-2030 TFP Projects-

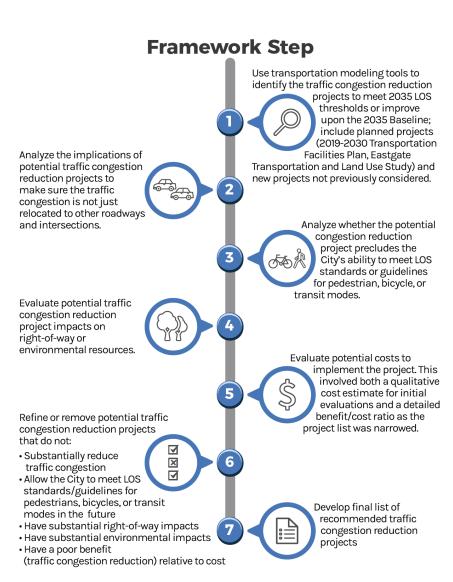
Unconstrained Funding (not part of adopted CIP) - \$108.7M

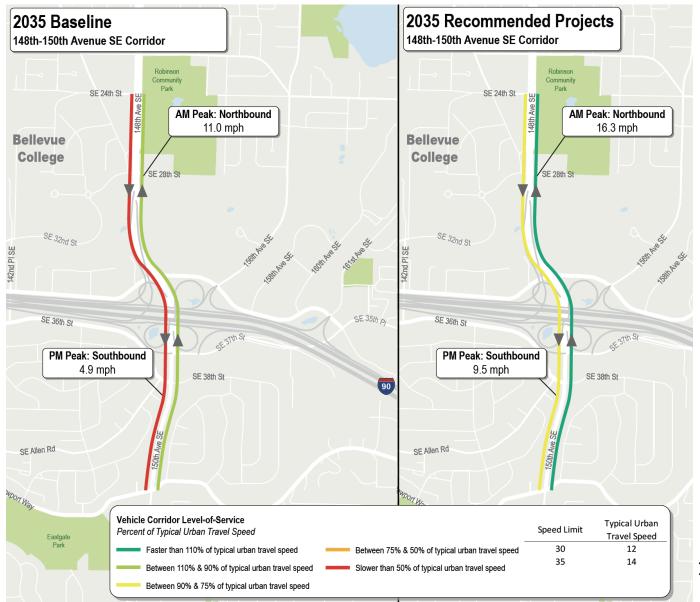
-Continuation of Safety and Connectivity Levy Projects (2026-2030)

\$388.1

Step 5 – Test Projects to Improve Performance to Support Growth

 Based on the available funding, identify projects to improve MMLOS outcomes

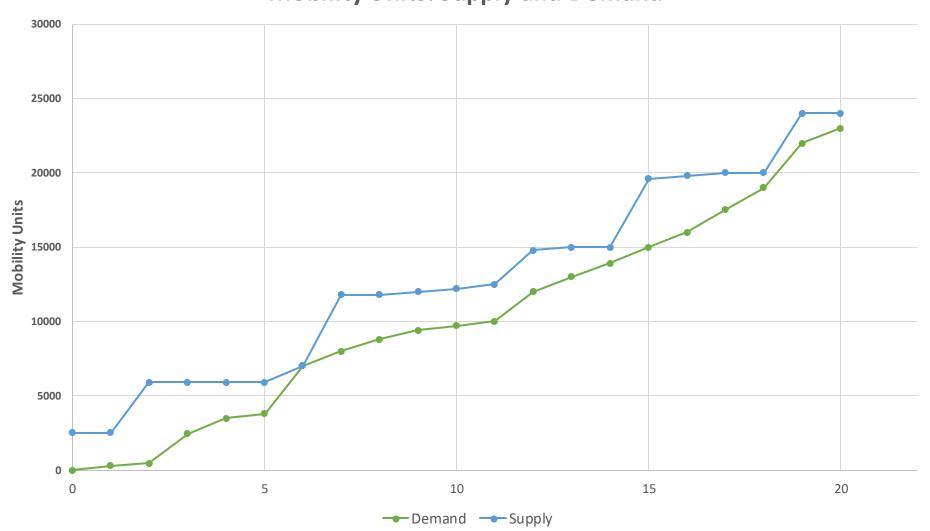


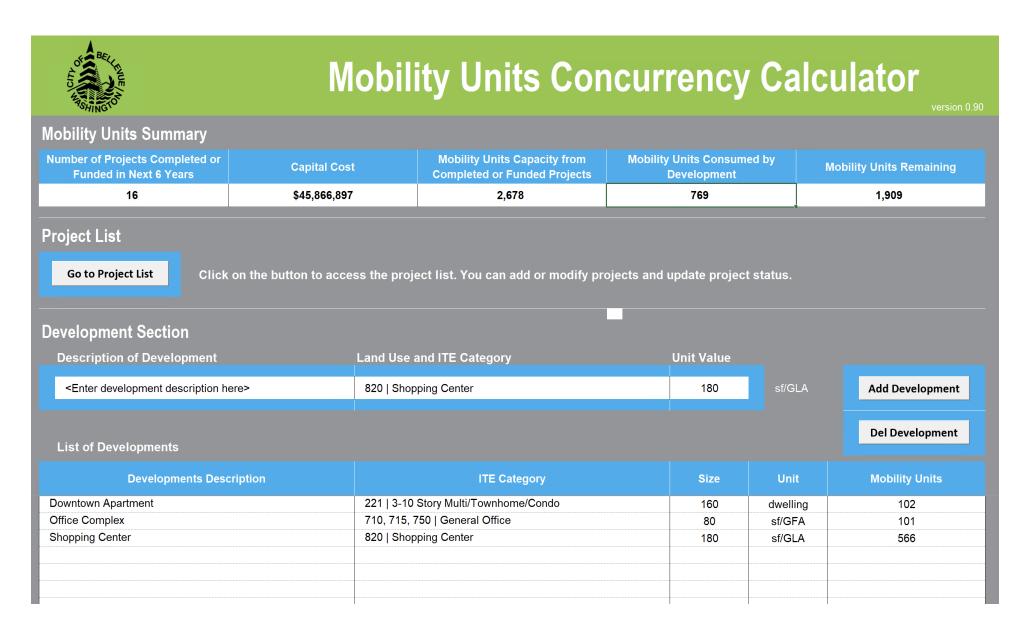

- Traffic congestion
- Transit speed and access
- Pedestrian access and comfort
- Bicycle access and comfort

Step 6 – Document Results

Steps 5 and 6 – Iterate to Identify Projects

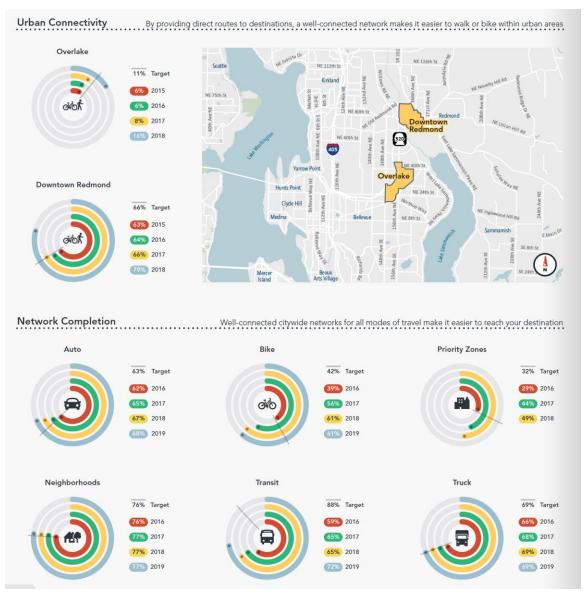
- As part of the TFP development, the City tests and models different improvement projects
- Works with Transportation Commission on balancing goals and priorities





Step 7 – Implement

Mobility Units: Supply and Demand


Step 7 – Implement

Tracking Progress and Adjusting Over Time

Tracking Progress and Adjusting Over Time

Discussion

- Questions?
- Comments?
- Suggestions for refinements on multimodal concurrency?

Next Steps for Concurrency

- TC March 11. Concurrency Refinements
- Project Prioritization
- Traffic Standards Code Amendments
- Comprehensive Plan Amendments
 - Council initiates April 5
 - Planning Commission briefing April 14
 - Planning Commission study and hearing Q3
 - Council study and decision Q4

Thank You!

Kevin McDonald kmcdonald@bellevuewa.gov 425-452-4558

Chris Breiland
c.breiland@fehrandpeers.com
206-576-4217

Don Samdahl <u>d.samdahl@fehrandpeers.com</u> 206-576-4220