Water System Seismic Resiliency Study Update

Mitigation Recommendations

Doug Lane, Utilities Department Senior Engineer Presented to the Environmental Services Commission

June 3, 2021

ESC Informational Briefing

No decision needed

Agenda

- 1. Background
- 2. Mitigation Recommendations
- 3. Benefits vs. Costs
- 4. Next Steps

Background

ESC Timeline

Water System Seismic Resiliency Study Update

Mitigation Recommendations

Recommendations

Three improvement categories:

Supply

Backbone

Distribution System

Supply: SPU Supply Resilience

Concept:

- Work with Cascade to influence SPU priorities
- May require Cascade investment
- Bellevue has no direct control
- Recommended but not assumed

Supply: Emergency Wells

Assume 6 locations, TBD Benefits:

- Positive Benefit/Cost
- Independence and Control Challenges:
- Staffing for treatment
- New water rights
- Land

Function:

- Resilient Pipe to Key Points
- Isolated for Controlled Restoration

Challenges

- Equity
- Time Needed to Isolate from leaking pipes

•

"Distribution: Main Replacement

- Continue existing program (Replace AC, CI pipe)
- Earthquake resistant pipe in vulnerable soils (< 4%)
- Predicted main breaks reduced more than 50%

Existing Piping (% of System):

Future Piping (% of System):

Distribution: Pumps, Reservoirs

- Already part of R&R program
- Prioritize pump stations along backbones
- **Improve** redundancy for vulnerable reservoirs

Pumped Backbone Routes

Forest Hills Reservoir & **Pump Station**

Simulated Mitigation Results

- Recovery time with recommended improvements
- Meets proposed level of service goals and policies

Recommendations Summary

Supply:

- Install Emergency Wells
- Lobby Cascade/SPU to prioritize transmission

Backbone

- Resilient pipe to key points
- Reduce valve closure delays

Distribution System

- Continue main replacement
- Prioritize pump stations on Backbones
- Plan for landslide losses

Timeline to meet:

15, 30, 50-year level of service goals

Water System Seismic Resiliency Study Update

Benefits vs. Costs

Event Impacts

- Residents
 - Income loss
 - Inconvenience
- Businesses
 - Revenue loss
 - Productivity loss
- Loss of life
- Fire Losses

Impact Calculations

- Source data:
 - Income statistics
 - Commuting patterns
 - Tax data
 - Water usage
 - Water sensitivity data
- Isolate water impacts (e.g. ignore power outage)

\$/day x days = \$ impact

Benefit = Reduced Risk

- Risk = Impact x Likelihood (event frequency)
- Both events will happen (cumulative risk)
- Combined \$9.5M/year reduced risk with improvements

Event	Current Impact	Impact after Improvements	Benefit	Frequency	Reduced Risk
Cascadia	\$2.4 billion	\$0.1 billion	\$2.3 billion	1 500 years	\$4.7 million per year
Seattle Fault	\$8.3 billion	\$0.7 billion	\$7.6 billion	1/800 years x 50%*	\$4.8 million per year

^{*}Estimated 50% likelihood of rupture in Bellevue

Benefit/Cost Ratio

Water System Seismic Resiliency Study Update

Next Steps

Next Steps

- Seismic vulnerability study final technical report available (June)
- Incorporate into Draft Emergency Water Supply Master Plan

ESC Direction Needed

• Informational; feedback only